

OSE LA SCIENCE A.S.B.L. Chaussée de Waterloo 52 5002 Saint-Servais \$\frac{1}{2} + 32(81)43.53.23: gilles@oselascience.be www.oselascience.be

1. Electrolyse de l'eau

A. Mode opératoire

- Placer les 2 électrodes de graphite dans le berlin qui contient de l'eau salée.
- Avec un câble, pincer une borne de la pile.
- Faire de même avec un second câble, sur l'autre borne.
- Avec les 2 pinces libres, toucher les électrodes de graphite.
- Les électrodes ne doivent pas se toucher.

Immédiatement, observer ce qui se passe dans l'eau.

B. Observations

Observer les dégagements gazeux sur chaque électrode de graphite.

C. Réflexions

1. Sachant que l'équation de l'électrolyse de l'eau s'écrit :

$$2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$$

Où se situe le dégagement d'hydrogène gazeux? Pourquoi?

Où se situe le dégagement d'oxygène gazeux? Pourquoi?

2. Une odeur caractéristique se dégage du berlin. La reconnaissez-vous ? D'où vient cette odeur ?

2. Dissolution du magnésium dans l'acide chlorhydrique

A. Mode opératoire

- ➤ A l'aide d'une pipette, mettre environ 3 cm d'acide chlorhydrique dans un petit tube à essai en plastique
- ➤ Préparer un tube à essai en Pyrex et une pince en bois, comme sur la photo

➤ Placer le morceau de magnésium dans l'acide, et couvrir avec le tube à essai en Pyrex, comme illustré

➤ En gardant le tube en Pyrex vers le bas, présenter son ouverture à la flamme d'une bougie

B. Observations

Le magnésium est dissous par l'acide. La réaction libère du gaz. Observer le comportement du tube en Pyrex lorsqu'on le présente à la flamme.

C. Réflexions

Comment peut-on qualifier le gaz produit?

L'équation de la réaction est la suivante :

 $2HCl + Mg(s) \rightarrow MgCl_2 + H_2(g)$

Pourquoi faut-il toujours garder l'ouverture du tube en Pyrex vers le bas?

3. Fabrication d'une « lampe à lave » au gaz carbonique

A. Mode opératoire

➤ Placer du bicarbonate de soude dans un tube à essai, jusqu'au repère horizontal

➤ A l'aide d'une pipette, ajouter de l'huile jusqu'à mihauteur (5 ml)

Avec une pipette, ajouter 15 gouttes de liquide bleu

B. Observations

- 1) Observer le comportement du liquide bleu
- 2) Observer son comportement lorsqu'il atteint le fond du tube à essai
- 3) Observer la suite de la réaction

C. Réflexions

A votre avis, puisqu'il réagit avec le bicarbonate (alcalin), quelle est la nature du liquide bleu ?

L'équation de la réaction est la suivante :

 $CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + H_2O + CO_2$ (g)

